Theorem 3 If a function *f* is differentiable at a point *c*, then it is also continuous at that point.

Proof Since *f* is differentiable at *c*, we have

$$
\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)
$$

But for $x \neq c$, we have

$$
f(x) - f(c) = \frac{f(x) - f(c)}{x - c} \cdot (x - c)
$$

 $\frac{f(x) - f(c)}{f(x)}$. $(x-c)$

Therefore $\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} \cdot (x - c) \right]$

Therefore
$$
\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} \cdot (x - c) \right]
$$

or
$$
\lim_{x \to c} [f(x)] - \lim_{x \to c} [f(c)] = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} \right]. \lim_{x \to c} [(x - c)]
$$

$$
= f'(c) \cdot 0 = 0
$$

or
$$
\lim_{x \to c} f(x) = f(c)
$$

 $x \rightarrow c$ Hence *f* is continuous at $x = c$.

Corollary 1 Every differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we have seen that the function defined by $f(x) = |x|$ is a continuous function. Consider the left hand limit

$$
\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \frac{-h}{h} = -1
$$

The right hand limit

$$
\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \frac{h}{h} = 1
$$

Since the above left and right hand limits at 0 are not equal, $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$ $f(0+h) - f$ \rightarrow ⁰ h $+h$) –

does not exist and hence *f* is not differentiable at 0. Thus *f* is not a differentiable function.

5.3.1 *Derivatives of composite functions*

To study derivative of composite functions, we start with an illustrative example. Say, we want to find the derivative of *f*, where

$$
f(x) = (2x + 1)^3
$$

164 MATHEMATICS

One way is to expand $(2x + 1)^3$ using binomial theorem and find the derivative as a polynomial function as illustrated below.

$$
\frac{d}{dx} f(x) = \frac{d}{dx} [(2x+1)^3]
$$

$$
= \frac{d}{dx} (8x^3 + 12x^2 + 6x + 1)
$$

$$
= 24x^2 + 24x + 6
$$

$$
= 6 (2x + 1)^2
$$

$$
f(x) = (h, g, g)(x)
$$

Now, observe that $f(x) = (h \circ g)(x)$

where
$$
g(x) = 2x + 1
$$
 and $h(x) = x^3$. Put $t = g(x) = 2x + 1$. Then $f(x) = h(t) = t^3$. Thus

$$
\frac{df}{dx} = 6(2x+1)^2 = 3(2x+1)^2 \cdot 2 = 3t^2 \cdot 2 = \frac{dh}{dt} \cdot \frac{dt}{dx}
$$

The advantage with such observation is that it simplifies the calculation in finding the derivative of, say, $(2x + 1)^{100}$. We may formalise this observation in the following theorem called the chain rule.

Theorem 4 (Chain Rule) Let *f* be a real valued function which is a composite of two functions *u* and *v*; i.e., $f = v \circ u$. Suppose $t = u(x)$ and if both $\frac{dt}{dt}$ *dx* and $\frac{dv}{dx}$ *dt* exist, we have

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}
$$

We skip the proof of this theorem. Chain rule may be extended as follows. Suppose *f* is a real valued function which is a composite of three functions *u*, *v* and *w*; i.e.,

f = (*w* o *u*) o *v*. If $t = v(x)$ and $s = u(t)$, then

$$
\frac{df}{dx} = \frac{d(w \text{ ou})}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}
$$

provided all the derivatives in the statement exist. Reader is invited to formulate chain rule for composite of more functions.

Example 21 Find the derivative of the function given by $f(x) = \sin(x^2)$.

Solution Observe that the given function is a composite of two functions. Indeed, if $t = u(x) = x^2$ and $v(t) = \sin t$, then

$$
f(x) = (v \circ u)(x) = v(u(x)) = v(x^2) = \sin x^2
$$

CONTINUITY AND DIFFERENTIABILITY 165

Put
$$
t = u(x) = x^2
$$
. Observe that $\frac{dv}{dt} = \cos t$ and $\frac{dt}{dx} = 2x$ exist. Hence, by chain rule

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos t \cdot 2x
$$

It is normal practice to express the final result only in terms of *x*. Thus

$$
\frac{df}{dx} = \cos t \cdot 2x = 2x \cos x^2
$$

Alternatively, We can also directly proceed as follows:

$$
y = \sin(x^2) \implies \frac{dy}{dx} = \frac{d}{dx}(\sin x^2)
$$

$$
= \cos x^2 \frac{d}{dx}(x^2) = 2x \cos x^2
$$

Example 22 Find the derivative of tan $(2x + 3)$.

Solution Let $f(x) = \tan (2x + 3)$, $u(x) = 2x + 3$ and $v(t) = \tan t$. Then

$$
(v \text{ o } u) (x) = v(u(x)) = v(2x + 3) = \tan (2x + 3) = f(x)
$$

Thus *f* is a composite of two functions. Put $t = u(x) = 2x + 3$. Then $\frac{dv}{dt} = \sec^2 t$ $\frac{dv}{dt}$ = sec² t and

2 *dt dx* $=$ 2 exist. Hence, by chain rule

$$
\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = 2\sec^2(2x+3)
$$

Example 23 Differentiate sin $(\cos(x^2))$ with respect to *x*.

Solution The function $f(x) = \sin(\cos(x^2))$ is a composition $f(x) = (w \circ v \circ u)(x)$ of the three functions *u*, *v* and *w*, where $u(x) = x^2$, $v(t) = \cos t$ and $w(s) = \sin s$. Put de la provincia de la provincia del prov

$$
t = u(x) = x^2
$$
 and $s = v(t) = \cos t$. Observe that $\frac{dw}{ds} = \cos s$, $\frac{ds}{dt} = -\sin t$ and $\frac{dt}{dx} = 2x$

exist for all real *x*. Hence by a generalisation of chain rule, we have

$$
\frac{df}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx} = (\cos s) \cdot (-\sin t) \cdot (2x) = -2x \sin x^2 \cdot \cos (\cos x^2)
$$